পূর্ব পাঠের পুনরালোচনা (৭.১)

সপ্তম শ্রেণি (মাধ্যমিক) - গণিত সরল সমীকরণ | - | NCTB BOOK
42
42

(১) যোগের ও গুণের বিনিময়বিধি

a, b এর যেকোনো মানের জন্য, a + b = b + a এবং ab = ba

(২) গুণের বণ্টনবিধি

a, b, c এর যেকোনো মানের জন্য, a(b + c) = ab + ac, (b + c) a = ba + ca

আমরা সমীকরণটি লক্ষ করি: x + 3 = 7

(ক) সমীকরণটির অজ্ঞাত রাশি বা চলক কোনটি?
(থ) সমীকরণটির প্রক্রিয়া চিহ্ন কোনটি?
(গ) সমীকরণটি সরল সমীকরণ কি না?
(ঘ) সমীকরণটির মূল কত?

আমরা জানি চলক, প্রক্রিয়া চিহ্ন ও সমান চিহ্ন সংবলিত গাণিতিক বাক্যকে সমীকরণ বলে। আর চলকের এক ঘাত বিশিষ্ট সমীকরণকে সরল সমীকরণ বলে। সরল সমীকরণ এক বা একাধিক চলকবিশিষ্ট হতে পারে।

যেমন, x + 3 = 7, 2y - 1 = y + 3, 3z - 5 = 0, 4 + 3 = x - 1,

x + 4y - 1 = 0, 2x - y + 1 = x + y ইত্যাদি, এগুলো সরল সমীকরণ।

আমরা এ অধ্যায়ে শুধু এক চলকবিশিষ্ট সরল সমীকরণ নিয়ে আলোচনা করব।

সমীকরণ সমাধান করে চলকের যে মান পাওয়া যায়, একে সমীকরণটির মূল বলে। মূলটি দ্বারা সমীকরণটি সিদ্ধ হয়। অর্থাৎ, চলকটির ঐ মান সমীকরণে বসালে সমীকরণটির দুইপক্ষ সমান হয়।

সমীকরণ সমাধানের জন্য চারটি স্বতঃসিদ্ধ আছে, তা আমরা জানি। এগুলো হলো:

  • পরস্পর সমান রাশির প্রত্যেকটির সাথে একই রাশি যোগ করলে যোগফলগুলো পরস্পর সমান হয়।
  • পরস্পর সমান রাশির প্রত্যেকটি থেকে একই রাশি বিয়োগ করলে বিয়োগফলগুলো পরস্পর সমান হয়।
  • পরস্পর সমান রাশির প্রত্যেকটিকে একই রাশি দ্বারা গুণ করলে গুণফলগুলো পরস্পর সমান হয়।
  • পরস্পর সমান রাশির প্রত্যেকটিকে অশূন্য একই রাশি দ্বারা ভাগ করলে ভাগফলগুলো পরস্পর সমান হয়।
কাজ: 2x - 1 = 0 সমীকরণটির ঘাত কত? এর প্রক্রিয়া চিহ্ন কোনটি লিখ। সমীকরণটির মূল কত?
common.content_added_by
টপ রেটেড অ্যাপ

স্যাট অ্যাকাডেমী অ্যাপ

আমাদের অল-ইন-ওয়ান মোবাইল অ্যাপের মাধ্যমে সীমাহীন শেখার সুযোগ উপভোগ করুন।

ভিডিও
লাইভ ক্লাস
এক্সাম
ডাউনলোড করুন
Promotion